An Embedded Stress Sensor for Concrete SHM Based on Amorphous Ferromagnetic Microwires

نویسندگان

  • Jesús Olivera
  • Margarita González Hernández
  • José Vicente Fuente
  • Rastislav Varga
  • Arkady Zhukov
  • José Javier Anaya
چکیده

A new smart concrete aggregate design as a candidate for applications in structural health monitoring (SHM) of critical elements in civil infrastructure is proposed. The cement-based stress/strain sensor was developed by utilizing the stress/strain sensing properties of a magnetic microwire embedded in cement-based composite (MMCC). This is a contact-less type sensor that measures variations of magnetic properties resulting from stress variations. Sensors made of these materials can be designed to satisfy the specific demand for an economic way to monitor concrete infrastructure health. For this purpose, we embedded a thin magnetic microwire in the core of a cement-based cylinder, which was inserted into the concrete specimen under study as an extra aggregate. The experimental results show that the embedded MMCC sensor is capable of measuring internal compressive stress around the range of 1-30 MPa. Two stress sensing properties of the embedded sensor under uniaxial compression were studied: the peak amplitude and peak position of magnetic switching field. The sensitivity values for the amplitude and position within the measured range were 5 mV/MPa and 2.5 µs/MPa, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental evidence of left handed transmission through arrays of ferromagnetic microwires

Experimental evidence of left-handed transmission is demonstrated through an array of ferromagnetic microwires. We used amorphous magnetic microwires to take advantage of both electric and magnetic responses locally generating a double negative medium at microwave frequencies, where the ferromagnetic resonance effects take place. The dilution of the responses of the ferromagnetic material provi...

متن کامل

Development of a Wireless MEMS Multifunction Sensor System and Field Demonstration of Embedded Sensors for Monitoring Concrete Pavements tech transfer summary

Pavement tends to deteriorate with time under repeated traffic and environmental loading. The structural health monitoring (SHM) concept can be applied as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their conditions. SHM can be useful for civil infrastructure in saving both money and time by turning schedule-based maintenance into co...

متن کامل

An Experimental Study on Static and Dynamic Strain Sensitivity of Embeddable Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix mterials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete pr...

متن کامل

An Experimental Study on Static and Dynamic Strain Sensitivity of Smart Concrete Sensors Doped with Carbon Nanotubes for SHM of Large Structures

The availability of new self-sensing cement-based strain sensors allows the development of dense sensor networks for Structural Health Monitoring (SHM) of reinforced concrete structures. These sensors are fabricated by doping cement-matrix materials with conductive fillers, such as Multi Walled Carbon Nanotubes (MWCNTs), and can be embedded into structural elements made of reinforced concrete p...

متن کامل

Methodology for Repeated Load Analysis of Composite Structures with Embedded Magnetic Microwires

K. Semrád, K. Draganová, Faculty of Aeronautics, Technical University of Kosice, Slovakia The article processes issue of strength of cyclically loaded composite structures with the possibility of contactless stress measuring inside a material. For this purpose a contactless tensile stress sensor using improved induction principle based on the magnetic microwires embedded in the composite struct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2014